Experimental Characterization of Compressive Properties of Microwave Cured GFRP Prepreg Composites

S.C. Joshi, S.K. Bhudolia and Y.L. Yap

School of Mechanical and Aerospace Engineering,
Nanyang Technological University, Singapore – 639798.

Polymer composites have become one of the preferred structural materials in high-technology applications, such as defense, aerospace, and marine. Research interest has been increasing in developing fast and energy-efficient manufacturing techniques and way of curing these composites. Most of the research, however, has been targeting the tensile and flexural properties of composite laminates. It is therefore intriguing to investigate compressive properties of polymer composites cured by microwave radiation in comparison with conventional thermal techniques.

In the current paper, study on compressive properties of microwave cured glass fibre reinforced epoxy (GFRP) composites is covered along with the results of the thermally cured (autoclave) composites. Two ply lay-up sequences, [0/90] and [±45], of GFRP laminates were fabricated and cured in an autoclave, and also in a commercial domestic microwave oven at an operating frequency of 2450 MHz. The microwave curing was proven to be significantly faster than the thermal curing translating into significant energy and cost savings. The compressive properties of the microwave-cured [0/90] and [±45] composites were found comparable to that of the autoclave cured ones. In fact, better compressive strengths were achieved for the microwave-cured laminates when the pressure applied during curing was even and led to uniform compaction. Fractographic analysis of the specimen carried out after the compression tests to observe the failure modes in both, the microwave and autoclave cured, composites is presented. The failure modes in microwave-cured specimen were found dominated by residual stresses; the reasons for which are discussed. Finally, the advantages of microwave curing process are highlighted and argued.
AUTHOR BIOGRAPHY

Dr. Sunil Chandrakant Joshi received his Ph.D. from Monash University, Australia, for his work on composites manufacturing processes. Currently he is an Academic staff in Aerospace Engineering division of the School of Mechanical & Aerospace Engineering at Nanyang Technological University, Singapore. He has more than 90 international publications to his credit so far. He is an area editor for an Elsevier journal. His research interests include fabric reinforced aerospace composites and structures, multi-functional composites, numerical simulation and optimization of composites manufacturing processes, analysis and testing of thermal controls for micro-satellites, and thermo-mechanical analysis of coated and composite structures.

Somen Kumar Bhudolia received his MSc in Aerospace Engineering from Nanyang Technological University, Singapore, and Technical University of Munich, Germany (Joint Degree Program). He worked as Lecturer for 1 year in School of Mechanical Engineering, KIIT, Bhubaneswar, India and as Research Associate in Division of Aerospace Engineering, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore for year and a half. He is currently pursuing PhD in NTU, Singapore. To date he has presented four conference papers and has one international publication. His research interests are – design, fabrication and testing of advance composite materials, thermoplastics, microwave curing of composites, NDT and fatigue analysis.

Yap Yee Ling received her Bachelor’s degree in mechanical Engineering from NTU. She is currently pursuing her PhD at MAE, NTU. Her research expertise is 3D printing, composites and structures.